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• Corporate software lab; Poland, USA, UK,…

– Primark Corp-> Thomson Financial -> IHS (4.5 years) 
• The biggest economical timeseries database
• Global systems’ integration

• CERN DB group (6.5 years); Geneva, Switzerland

• Largest data migration at the time (2002):
– 400TB moved from Objectivity to hybrid Oracle+in-house platform

– Largest relational scientific database running at CERN

» Compass, Harp

• Biomed secure middleware, Grid

• Gaia Geneva group (8 years); UNIGE/ISDC, Geneva

– Coordination Unit 7 (CU7) Data Architect
– Data Processing Centre for Geneva (DPCG) leader/manager

– XLDB, timeseries, distributed systems, ML, science, art, literature, paragliding, 
basketball, volleyball, architecture…
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• CERN at the time had the biggest database in the world

• Objectivity -> ~400TB

• OODB (can anybody remember ODMG manifesto - 1996?)

• Page-store, with native C++ binding

• Quite fast

• Expensive

• Niche..
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• OODB had been at the time what NoSQL has been recently

• Impedance mismatch

• Graph vs relational

• RAM pointer-swizzling

•  OODB vs Relational  DBMS:

• Two competing philosophies
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• Oracle offered their help

• First RAC installations

• C++ bindings 

• Biggest data migration at the time

• SDSS -> Jim Gray -> Sloan Sky Digital Survey (2000-…)

• MapReduce vs RDBMS vs newSQL
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Databases	in	Astronomy
• There have been many 

• File based: 
• FITS: Flexible Image Transport System -> Image 

container 
• Sloan Digital Sky Survey (1998, 40TB raw + 3TB 

processed) 
• Internal competition between Objectivity (OODB) 

and  MsSql (RDBMS) - Jim Gray  
• “He was asking questions, then after some time coming back 

with a SQL solution which was always better than one of 
Objectivity (to our frustration)…” Peter Z. Kunszt, ~2004 
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Databases	in	Astronomy

• Awareness of DB advantages has been growing over 
recent years
• Scientist => Data Scientist
• Role of the newSQL
• Competition: Document stores, Streaming 

frameworks, Specialized hardware
• Future: Polyglot-Hybrids

• Mix of all -> project expertise dependent
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Information is beautiful…
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! [4th Paradigm by Jim Gray] 
 
… to have a world in which all of the science literature 
is online, all of the science data is online, and they 
interoperate with each other...

! and methods, including code is online as well

Driving	force

http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/


Gaia	premise
• Publication of all data 
• Publication of open Apache-licensed code 

• Publication of methods (i.e. 10+ different period search 
methods, hierarchical supervised classification, unsupervised 

classification) 
• At the end of the mission  

• Data Release 4, 2022 
• Data Release 2, April 2018 

• Via Web-archive, service, for offline use, self 
descriptive.. 
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• Gaia Catalogue 
• Gaia Archive
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2022

Hipparcos vs Gaia catalogue	
Ultimate goal

1997

10 kilometers of 
books!
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What	is	so	special	about	Gaia?
! European Space Agency cornerstone mission
! No equivalent mission for 20-30+ years…

! Census of our Galaxy:
! All objects between 6 and 20th magnitude (~1.7B stars, asteroids, quasars, 

extragalactic supernovae, variables)
! On average 80 measurements during its 5 year mission

! positions and parallax with a precision of 20 μasec (at V= 15 mag)

! Proper motions with a precision of 20 μasec/year (at V= 15 mag)

! Radial velocities with a precision of 2-10 km/s (for star V<17)

! Low resolution spectrum of each star: 
! allows to determine many stellar properties 

e.g. temperature, surface gravity, metalicity, age, ... 

! Can potentially discover ~10.000 exo-planets

! Estimated 10-20% of all population are variables

15
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The Gaia instruments
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One	of	the	two	
primary	mirrors
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path of viewing directions 	
over 4 days

path of spin axis	
over 4 days

Gaia scanning:  Motion of viewing directions over 4 days

Telescope 1 
viewing direction

Telescope 2  
viewing direction

image	credit:	Lennart	Lindegren
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sun

spin	
axis

path of spin axis 	
over 4 months

4 rev/day

path of sun 	
over 4 months

45°

Gaia scanning:  Motion of the spin axis over 4 months 

image	credit:	Lennart	Lindegren
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Proper	motion	in	3D
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Gaia@Geneva-	scientific	challenge

Novae	

(DAV)	H-WDs		

Variability Tree	

Extrinsic	 Intrinsic	

Supernova

e	

Symbio9

c	
Dwarf	novae	

(PG1716+426,	Betsy)	
long	period	sdB	

(W	Vir)	

Type	II	Ceph.	
δ	Cepheids	

RR	Lyrae	Credit	:		L.	Eyer	&	N.	Mowlavi		
(03/2009)	

δ	Scu9	
γ	Doradus	

Slowly	
pulsa9ng	B	
stars	

α	Cygni	

β	Cephei	

λ	Eri	

SX	Phoenicis	

Mira

s	

Irregular

s	
Semi-	
regular
s	

Small	ampl.	red	var.	
(DO,V	GW	Vir)	

He/C/O-WDs	

He	star		

Be	stars	

Binary	red	
giants	

α2	Canes	
Vena;corum	
MS	(B8-A7)	with	

strong	B	fields	

SX	Arie;s	
MS	(B0-A7)	with	

strong	B	fields	

Red	dwarfs	

(K-M	stars)	

Single	red	

giants	

β	Per,	α	Vir	

PMS	

S	Dor	 (DBV)	He-WDs		

(EC14026)	

short	period	

sdB	

RV	

Tau	

FG	Sge	

Sakurai,	

V605	

Aql	
R	Hya	(Miras)	

δ	Cep	(Cepheid)	
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Structure

• Story of perpetual change 
• Databases in Astronomy 
• Gaia mission 
• Gaia processing at CU7/DPC Geneva 
• P[ro|ost]gres for science
• Postgres-XL tale 
• Collaboration 
• Future
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Science as a design exercise..

33

SciAm  2015/2/10 - Visualization constraints  
 
by Jacob  
Bronowski  
 

 
 
 
 
Context as a shaping  
force  
If the designer has any 
freedom, it is within  
this triangle of forces  
or constraints. 
 
[The Shape of Things, 
The Observer,1952]

http://blogs.scientificamerican.com/sa-visual/how-to-choose-the-form-of-an-infographic-it-s-all-about-context/


Postgres	for	science

• Need for [software] tools  
• Open source 
• Stable enough 
• Scaling well enough 

• Vertical vs horizontal 
• Columnar & Parallel 
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Postgres	for	science

• Needs 
• Extensive enough 

• Spatial index (q3c, pgSphere) 
• Bloom, Brin, R-Tree, GIN, GIST.., KNN-.. 
• plJava, plR, … 

• Extendible 
• PG Extensions 
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Workflow	Scaling	-	PG	as	an	appliance

‣ Distributed iterative process, repeated on small 
selections or samples of sources outside Geneva.

‣Too	few	resources	to	re-run,	used	for	results	analysis	and	
tagging	via	VisualisaEon	tool	mostly.	

‣Virtual	Appliances	issued	daily	at	some	point.	
‣5GB	of	plots	generated,	100s	of	them	with	1000s	of	details	
‣Very	intense	communicaEon
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Postgres	for	science	infrastructure

• All our Collaborative tools run on Postgres(-XL) 
• Mattermost (Free Slack alternative) (PG) 
• Owncloud (Free Dropbox alternative) (PG) 
• VariDashboard DPCG (being integrated with both 

above) (PG-XL) 
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• OK, we have ELK deployed as well… 
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Capturing	soft	knowledge..
‣ Tags	as	organic	part	of	a	data	model	
‣ The	more	of	the	soJ-knowledge		
‣ tags,	discussions,	annotaEons,	both	verbal	and	visual…
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Capturing	soft	knowledge..
‣ Tags	as	organic	part	of	a	data	model	
‣ The	more	of	the	soJ-knowledge		
‣ tags,	discussions,	annotaEons,	both	verbal	and	visual…

@john: this is 
clearly an alias

@mary: no, this is 
expected  @john: let’s tag 

it for QA 
checks..

@mary: run YYY already has these 
cases, check them out: 

[LSCARGLE:QA:OK] tag
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Validation	via	Analytics,	Visualisation

How to reduce 80 x 4 billion records to a single screen?

How to show 500+ derived values from each of 1.5 billion 
sources,  6 billion timeseries from 100Ks of CPU hours?

How to correlate results with calibrated data from Spacecraft?

How to not get lost in all generations of data?

And plentitude of software versions?

How to: Inspect

Validate

Act on unexpected
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• Story of perpetual change 
• Databases in Astronomy 
• Gaia mission 
• Gaia processing at CU7/DPC Geneva 
• Postgres for science 
• Postgres-XL tale
• Collaboration 
• Future
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Postgres-XL	-	Scalability
• Started by Koichi Suzuki at NTT@Japan as Postgres-XC 

• Coordinators and datanodes. 
• Evolved into Postgres-X2 

• Postgres-XL: fork of XC with stress on robustness 
• Some changes in the architecture, introduction of shared 

queues for execution of queries in scatter-gather 
pattern 

• Most of the recent work done by Pavan Deolasee and 
Tomas Vondra of 2ndQuadrant

41



Postgres-XL	-	our	philosophy
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Postgres-XL	-	our	philosophy
• Gaia perspective on Open source community with esp.

2ndQuadrant support
• Do ut des

• I give that you may give…
• Belief that byproduct of the public science should

be generic Open Source with mutual gain.
• A win-win, but at a cost, as:

• Gaia is the extreme use-case for any data
management platform in the academic frame and
would need special care whatever the platform used..
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Postgres-XL	-	Scalability
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Data	mapping,	photometry	reconstruction

44
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Linear	scalability

45

Distributed group by at each partition.

Arbitrary chosen 68 partitions by sourceid.


By scattering load on all the cluster

we can get linear scalability, 100x faster than with a naive approach.


Takes 12 hours for 15TB of DB volume generated

Phot table 
30 x 10^9

part 1

part 68

datanode 1

datanode 2
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Linear	scalability

45

Distributed group by at each partition.

Arbitrary chosen 68 partitions by sourceid.


By scattering load on all the cluster

we can get linear scalability, 100x faster than with a naive approach.


Takes 12 hours for 15TB of DB volume generated

Phot table 
30 x 10^9

part 1

part 68

datanode 1

datanode 2

datanode 3

datanode 4

datanode 5

datanode 6

datanode 7

datnode8

Total 130TB now

60TB in live tables

Will double every year..
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Linear	scalability
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• Meta-queries generating queries per partition queries
executed in parallel
• Poor-man-parallelism



Postgres-XL	Journey
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Index, Temp, input output table space separation



Postgres-XL	Journey

47

Pacemaker/watchdog

X
C

 c
lu

st
er

A Primary+  D Backup C Primary + B Backup D Primary +C BackupB Primary + A Backup

a

Coordination/workload between primary nodes

Log shipping Log shipping Log shipping

55TB usable
RAID50

80TB usable 
possible

Log shipping

Currently 8 x HP Apollo 4510 
Two IO controllers 

SSDs + Raid50  
Index, Temp, input output table space separation



Postgres-XL	collocated	coord	+	datanode
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Primary storage !
Primary coordinator !
Backup storage !
Backup coordinator !
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Postgres-XL	Journey

49

• We pushed few patches improving scalability 
• ~900 active computing cores, no pooling would work well 

• Reported ~40 issues, from corruption to minor 
annoyances 

• Created a global system views extension stub 
• https://github.com/yazun/xl_global_views 

https://github.com/yazun/xl_global_views


Future
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Future
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• We are finishing Data Release Cycle 2 now
• Postgres XL 10

• Helping with hardware synthetic testing on our hw
• Deployment and testing on v. 10. November-…
• Moving to native v10 partitioning
• Continuing being part of the Postgres-XL effort

• Some 10+ issues should be fixed.
• Expansion of the cluster.



Thank	you,	Q	&	A	
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• Special thanks for Pavan Deolasee and Tomas Vondra for their 
dedication and 2ndQuadrant (Simon Rigs) for recognition of the 
synergy.


