

Parallel Queries with PostgreSQL

Gianni Ciolli

PGDay.IT, 13 Ottobre 2017

Parallel Query

- The ability to use multiple CPUs in a single query
- Introduced in version 9.6
- Expanded in version 10

Parallel Feature Matrix

	9.6	10
Sequential Scan	√	√
B-tree Index Scan		\checkmark
Bitmap Heap Scan		\checkmark
Hash Join	✓	✓
Nested Loop Join	\checkmark	\checkmark
Merge Join		\checkmark
Aggregation	✓	✓
Gather Merge		\checkmark
More Parallel Queries in PL		\checkmark

Single-CPU Query Example

- One int4 column
- 1M rows

```
Seq Scan on t
(cost=0.00..14425.00 rows=1000000 width=4)
```


Parallel Query Example

- One int4 column
- 1M rows

```
Gather
(cost=1000.00..10591.67 rows=1000000 width=4)
Workers Planned: 2
-> Parallel Seq Scan on t
(cost=0.00..8591.67 rows=416667 width=4)
```


The Gather Node

- There is one Gather node
- Separates single-CPU nodes from Parallel nodes

Figure: The Previous Example

Parallel Plan

- a.k.a. Partial Plan
- Executed by ≥1 parallel processes
- Each output row is generated exactly by one process
- Extra logic to split work properly across processes

Parallel Plan

Figure: Generic Example

Parallel Safety

- Parallel Safe
 - Always OK
- Parallel Restricted
 - Only **above** a Gather node
- · Parallel Unsafe
 - Never OK
 - Forces query to run on 1 CPU

How Many Parallel Workers?

 $1 + \log_3 \left[\frac{\text{(Size in blocks)}}{\text{min parallel * size}} \right]$

How Many Parallel Workers?

$$1 + \log_3 \left[\frac{\text{(Size in blocks)}}{\text{min parallel * size}} \right]$$

???

How Many Parallel Workers?

 $1 + \log_3 \left\lfloor \frac{(\text{Size in blocks})}{\text{min_parallel_*_size}} \right\rfloor$

· Grows (slowly) with table size

- Grows by decreasing min_parallel_*_size
 - PostgreSQL 9.6:
 - min_parallel_relation_size
 - PostgreSQL 10:
 - min_parallel_table_scan_size
 - min_parallel_index_scan_size

Parallel Aggregation

- Done via Partial Aggregation
- Aggregate must:
 - be Parallel Safe
 - have a COMBINE method
 - State → State → State
- Each worker does a Partial Aggregation
- COMBINE aggregates partial results

And now...

Questions?

And then...

Thank you!

gianni@2ndquadrant.com @GianniCiolli

This document is distributed under the **Creative Commons Attribution-Non commercial-ShareAlike 3.0 Unported** licence

A copy of the licence is available at the URL http://creativecommons.org/licenses/by-nc-sa/3.0/
or you can write to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.