

(Re)writing your SQL for optimal performance

Luca Veronese
Freelance consultant

Some projects I have worked on

● Italian Chambers of Commerce:
– Reporting engine (Visure/Certificati)
– Replication solution Oracle/Unix to DB2/MVS

● 2000: one of the first browser based business
application development tools

● Java ERP development framework
● NebulaERP, italian ERP software
● Database Events notification system
● heterogeneous, over the Internet, data replication

solution
● IoT: PostgreSQL based Cloud API server

SQL Performance facets

● Database design
– Logical, physical (indexing)

● Application design
– How you interact with the rdbms (ORM?!)

– Functionality used (e.g. prepared statements, batching...)

● Database tuning and management (e.g. statistics,
vacuum), O/S tuning

● Optimizer related issues

SQL is a declarative language

● RDBMS reads your code, parses it and feeds
the result to the optimizer

● The optimizer figures out the best plan to
execute your query

● SQL optimization is a NP-complete problem

● Optimizers are imperfect so sometimes they
return (slow) sub-optimal plans

Manual SQL optimization

● Some RDBMS allow hints to be fed to the
planner

● PostgreSQL does not implement hints (proudly)
● BUT, most of the times, we can work around

the "issue" by rewriting the SQL
● We will see two real world examples

Reading a PostgreSQL plan

● A plan is a tree shaped structure
● Leaves correspond to data access operations (tables and

indexes)
● Intermediate nodes correspond to operators applied to child

nodes (e.g. join, sort…)
● To visualize plans I will use PEV from Alex Tatiyants, a handy

tool for the job
● Use EXPLAIN (ANALYZE, COSTS, VERBOSE, BUFFERS,

FORMAT JSON) to generate JSON plan description
● Paste result into browser based UI

Example 1: The original SQL

The query
SELECT *

FROM saldi_sottoconti

WHERE

 codice_azienda = 'S0040SC'

AND id_esercizio_comp = 2017

AND id_divisione = 2

The (slow) plan

Have a look at the slowest node
Index scan should be fast and it is
(0.007 ms)
But this node is executed
1,226,906 times (See Actual Loops)

So the problem is caused by the
left node in the join operation that
is feeding too much data into this
node

This node generates 1.2 million rows

So we descend to the
children nodes to
further investigate

Here are the children

The right node is the culprit
From the SQL query we expect the JOIN to the conti
table to be performed after the join to the sottoconti
table

BUT the optimizer decides to join conti to the result
of the preceding join operations before joining to
sottoconti

The node uses cnti_pk (PK index) but since it does
not have the sottoconti row data it can only use
three of the four primary key columns

The optimizer "thinks" this will return 1 row (Plan
rows) but this is NOT true (83 rows returned)

This is a BAD result I can only explain by the planner
assuming statistical independence on the index
columns. In this case these 3 columns are perfectly
correlated!

This causes the join to produce a cartesian product
between the 14,782 rows of the left node and the 83
rows of this node (14,782 * 83 = 1,226,906)

How can we rewrite the SQL?

● Observe: conti and sottoconti are not relevant
for filter and aggregation

● They are only used for projection
● We can commute the aggregation with the conti

and sottoconti joins
– So we will join to a smaller cardinality set

● This can be done introducing a subquery in the
FROM clause (nesting)

The rewritten SQL

The optimal plan

This plan is more than 76x faster than the original

The pattern I used

● Move joins used only for projection outside the
aggregation

– need to check the rewrite preserves semantics!

● Eventually force join order using subqueries in the
SELECT clause

– Only if 1 column selected

– Otherwise introduce additional subquery level

What about WITH?

● While WITH could be used to bring the original query
to 1.6s

● It can’t be used in this VIEW since predicate
pushdown does not happen for WITH (at the moment)

● The codice_azienda restriction cant’ be hard coded!

● Without the restriction the query takes >16s which is
worse than the original

Another example

The query

SELECT *

FROM intrastat_1c

WHERE codice_azienda = 'S0032IC'

AND num_rif = 451

This is the PRIMARY KEY of the mod_intra table

The plan

This is the slow plan. Takes 1 min and 16 seconds.

Let’s zoom in

This is MUCH better

This fixed version talkes 7.83 seconds. Are we done?
We can observe that the query has two main branches and the right one depicted
here actually does not depend on the restriction criteria we have in the query.
PostgreSQL does its best to optimize this subquery but here we have a case of linear
complexity where the query time is going to grow steadily as more data is added to
the bolle_righe table. This is going to be a problem in the future assuming the
current performance result is acceptable.

We should rewrite the query so that the right branch can be bound in size depending
on the results from the left branch which actually depends on the query restriction.

The strategy

● Rewrite the query to force a particular join order

● This can be done using the nesting trick, using
subqueries in the FROM clause to our advantage

● The rewritten query is more complex sintactically and
less readable, but is much faster, as we will see

The OPTIMAL plan

Summary and thoughts

● Perform these optimizations only when required
● Optimal SQL sometimes needs to be written in a less declarative way
● For views, beware of multiple use cases. You may optimize one but

worsen others
● Think about expected data flows and check if the plan matches. Many

times the planner does better than you, but sometimes it gets things
wrong

● Don’t be afraid of using nesting when it can be useful. PostgreSQL is
good at pushing down predicates (WITH is currently an exception)

● Think about branch complexity: avoid linear complexity (branches that
don’t take advantage of query restrictions)

● Could PostgreSQL do these rewrites by himself?

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28

